Resolving Species Level Changes in a Representative Soil Bacterial Community Using Microfluidic Quantitative PCR

نویسندگان

  • Hannah Kleyer
  • Robin Tecon
  • Dani Or
چکیده

Rapid advances in genome sequencing technologies enable determination of relative bacterial abundances and community composition, yet, changes at the species level remain difficult to detect despite importance for certain ecological inferences. We present a method for extraction and direct quantification of species composition of a predefined multispecies bacterial community using microfluidic-based quantitative real-time PCR (qPCR). We employ a nested PCR approach based on universal 16S rRNA gene pre-amplification followed by detection and quantification of absolute abundance of bacterial species using microfluidic array of parallel singleplex qPCR reactions. Present microfluidic qPCR supports 2,304 simultaneous reactions on a single chip, while automatic distribution of samples and reactants minimizes pipetting errors and technical variations. The utility of the method is illustrated using a synthetic soil bacterial community grown in two contrasting environments - sand microcosms and batch cultures. The protocol entails extraction of total nucleic acid, preparation of genomic DNA, and steps for qPCR assessment of bacterial community composition. This method provides specific and sensitive quantification of bacterial species requiring only 2 ng of community DNA. Optimized extraction protocol and preamplification step allow for rapid, quantitative, and simultaneous detection of candidate species with high throughput. The proposed method offers a simple and accurate alternative to present sequencing methods especially when absolute values of species abundance are required. Quantification of changes at the species level contributes to the mechanistic understanding of the roles of particular species in a bacterial community functioning.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Differences in vegetation composition and plant species identity lead to only minor changes in soil-borne microbial communities in a former arable field.

To examine the relationship between plant species composition and microbial community diversity and structure, we carried out a molecular analysis of microbial community structure and diversity in two field experiments. In the first experiment, we examined bacterial community structure in bulk and rhizosphere soils in fields exposed to different plant diversity treatments, via a 16S rRNA gene c...

متن کامل

Links between plant and rhizoplane bacterial communities in grassland soils, characterized using molecular techniques.

Molecular analysis of grassland rhizosphere soil has demonstrated complex and diverse bacterial communities, with resultant difficulties in detecting links between plant and bacterial communities. These studies have, however, analyzed "bulk" rhizosphere soil, rather than rhizoplane communities, which interact most closely with plants through utilization of root exudates. The aim of this study w...

متن کامل

Rhizosphere microbial community structure in relation to root location and plant iron nutritional status.

Root exudate composition and quantity vary in relation to plant nutritional status, but the impact of the differences on rhizosphere microbial communities is not known. To examine this question, we performed an experiment with barley (Hordeum vulgare) plants under iron-limiting and iron-sufficient growth conditions. Plants were grown in an iron-limiting soil in root box microcosms. One-half of ...

متن کامل

Assessing soil bacterial community and dynamics by integrated high-throughput absolute abundance quantification

Microbial ecological studies have been remarkably promoted by the high-throughput sequencing approach with explosive information of taxonomy and relative abundance. However, relative abundance does not reflect the quantity of the microbial community and the inter-sample differences among taxa. In this study, we refined and applied an integrated high-throughput absolute abundance quantification ...

متن کامل

RNA-Seq and microfluidic digital PCR identification of transcriptionally active spirochetes in termite gut microbial communities

CO2-reductive acetogenesis in termite hindguts is a bacterial process with significant impact on the nutrition of wood-feeding termites. Acetogenic spirochetes have been identified as key mediators of acetogenesis. Here, we use high-throughput, short transcript sequencing (RNA-Seq) and microfluidic, multiplex digital PCR to identify uncultured termite gut spirochetes transcribing genes for hydr...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 8  شماره 

صفحات  -

تاریخ انتشار 2017